Figure: 16 TAC §401.315(f)(3)(A)

Match Field 1	Match Field 2	Odds	Prize Category	Percentage of Prize Fund
5	7	1:175,711,536	Jackpot	63.6
5	0	1:3,904,701	Second	12.8
4	. 1	1:689,065	Third	2.90
4	0	1:15,313	Fourth	1.96
3	1	1:13,781	Fifth	2.18
2	1	1:844	Sixth	2.38
3	0	1:306	Seventh	4.58
1		1:141	Eighth	4.26
0	1	1:75	Ninth	5.34
Reserve				70
Totals		1:39.89		100

Figure: 30 TAC §114.315(c)(5)(C)

$$\overline{X}_{C} < \overline{X}_{R} + \delta - S_{p} \cdot \sqrt{2}/_{n} \cdot t$$
 (a, 2n-2)

Where:

 \bar{X}_{c} = Average emissions during testing with the candidate fuel.

 \bar{X}_R = Average emissions during testing with the reference fuel.

δ = Tolerance level equal to 1 percent of \overline{X}_R NO_x, and 2% of \overline{X}_R for total hydrocarbons (THC), non-methane hydrocarbons (NMHC), and particulate matter (PM).

 S_n = Pooled standard deviation.

t (a, 2n-2) = The one-sided upper percentage point of t distribution with a = 0.15 and 2n-2 degrees of freedom.

n = Number of tests of candidate and reference fuel.